Iron Overload and Diabetes Risk: A Shift From Glucose to Fatty Acid Oxidation and Increased Hepatic Glucose Production in a Mouse Model of Hereditary Hemochromatosis

نویسندگان

  • Jingyu Huang
  • Deborah Jones
  • Bai Luo
  • Michael Sanderson
  • Jamie Soto
  • E. Dale Abel
  • Robert C. Cooksey
  • Donald A. McClain
چکیده

OBJECTIVE Excess tissue iron levels are a risk factor for diabetes, but the mechanisms underlying the association are incompletely understood. We previously published that mice and humans with a form of hereditary iron overload, hemochromatosis, exhibit loss of β-cell mass. This effect by itself is not sufficient, however, to fully explain the diabetes risk phenotype associated with all forms of iron overload. RESEARCH DESIGN AND METHODS We therefore examined glucose and fatty acid metabolism and hepatic glucose production in vivo and in vitro in a mouse model of hemochromatosis in which the gene most often mutated in the human disease, HFE, has been deleted (Hfe⁻(/)⁻). RESULTS Although Hfe⁻(/)⁻ mice exhibit increased glucose uptake in skeletal muscle, glucose oxidation is decreased and the ratio of fatty acid to glucose oxidation is increased. On a high-fat diet, the Hfe⁻(/)⁻ mice exhibit increased fatty acid oxidation and are hypermetabolic. The decreased glucose oxidation in skeletal muscle is due to decreased pyruvate dehydrogenase (PDH) enzyme activity related, in turn, to increased expression of PDH kinase 4 (pdk4). Increased substrate recycling to liver contributes to elevated hepatic glucose production in the Hfe⁻(/)⁻ mice. CONCLUSIONS Increased hepatic glucose production and metabolic inflexibility, both of which are characteristics of type 2 diabetes, may contribute to the risk of diabetes with excessive tissue iron.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Pancreatic Iron Overload in Transfusion Dependent Thalassemic Patients

Advances in the management of transfusion dependent thalassemic patients have improved the survival of these patients. The most important consequence of repeated and frequent transfusions is iron accumulation in vital organs. The magnetic resonance imaging (MRI) is a non-invasive and valid technique for the estimation of iron stores. Despite multiple studies about cardiac and liver MRI T2*, the...

متن کامل

Proteomic analysis of hepatic iron overload in mice suggests dysregulation of urea cycle, impairment of fatty acid oxidation, and changes in the methylation cycle.

Liver iron overload can be found in hereditary hemochromatosis, chronic liver diseases such as alcoholic liver disease, and chronic viral hepatitis or secondary to repeated blood transfusions. The excess iron promotes liver damage, including fibrosis, cirrhosis, and hepatocellular carcinoma. Despite significant research effort, we remain largely ignorant of the cellular consequences of liver ir...

متن کامل

Need for reclassification of diabetes secondary to iron overload in the ADA and WHO classifications.

In the current classifications of diabetes by the American Diabetes Association (ADA) (2006) (1) and the World Health Organization (WHO) (1999) (2), hereditary hemochromatosis is listed under the heading “diseases of the exocrine pancreas”; however, this classification does not comply with the current evidence of diabetes secondary to iron overload. The common form of hereditary hemochromatosis...

متن کامل

Nonalcoholic fatty liver disease: a feature of the metabolic syndrome.

Insulin sensitivity (euglycemic clamp, insulin infusion rate: 40 mU. m(-2). min(-1)) was studied in 30 subjects with biopsy-proven nonalcoholic fatty liver disease (NAFLD), normal glucose tolerance, and a BMI <30 kg/m(2). Of those 30 subjects, 9 had pure fatty liver and 21 had evidence of steatohepatitis. In addition, 10 patients with type 2 diabetes under good metabolic control and 10 healthy ...

متن کامل

Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high‐calorie diet

Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2011